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Figure 1. We revisit perspective projection for 3DMM regression. We introduce a post hoc learnable parameter that is compatible with
existing methods using orthogonal projection, to improve the reconstruction quality on close-up images.

1. Abstract

We introduce a novel camera model for monocular 3D
Morphable Model (3DMM) regression methods that effec-
tively captures the perspective distortion effect commonly
seen in close-up facial images.

Fitting 3D morphable models to video is a key technique
in content creation. In particular, regression-based ap-
proaches have produced fast and accurate results by match-
ing the rendered output of the morphable model to the target
image. These methods typically achieve stable performance
with orthographic projection, which eliminates the ambigu-
ity between focal length and object distance. However, this
simplification makes them unsuitable for close-up footage,
such as that captured with head-mounted cameras.

We extend orthographic projection with a new shrink-
age parameter, incorporating a pseudo-perspective effect
while preserving the stability of the original projection. We
present several techniques that allow finetuning of existing
models, and demonstrate the effectiveness of our modifica-
tion through both quantitative and qualitative comparisons

using a custom dataset recorded with head-mounted cam-
eras.

2. Introduction

Fitting 3D morphable models (3DMMs) to videos tradi-
tionally required an optimization process to minimize the
difference between the projected 3DMM and the 2D tar-
get image features in order to estimate the 3DMM param-
eters. With the development of deep learning techniques,
regression-based approaches that predict the 3DMM param-
eters directly from image features have become more popu-
lar. By comparing the rendered image and the target image,
it is possible to learn efficiently without ground truth anno-
tations. However, these methods typically employ orthogo-
nal projection to map the 3DMM onto image space, because
it removes the ambiguity regarding focal length and dis-
tance from the camera. This projection method ignores the
effect of perspective distortion, which leads to unintended
artifacts such as smaller noses and levitated jawlines.

In this work, we propose a simple yet impactful cam-
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era model to capture the effect of perspective distortion by
extending orthogonal projection with a shrinkage param-
eter, which controls the strength of perspective distortion.
This parameter is regressed with a linear layer and is com-
patible with most architectures. We propose several fine-
tuning techniques that allow us to adopt this parameter into
existing methods that use orthogonal projection, including a
per-dataset shrinkage prior and a masking technique to ad-
dress the ambiguity of the nose and the face contour. These
processes enable converting existing models trained with
orthogonal projection to the proposed camera model, using
uncalibrated images. We evaluate the effectiveness of our
proposed modification through quantitative and qualitative
comparisons on head-mounted camera footage.

In summary, our contributions are as follows:
• a new camera model which extends orthogonal pro-

jection to capture the effects of perspective distortion.
• fine-tuning techniques to incorporate this shrinkage

parameter into existing methods using orthogonal
projection.

3. Related work
In this section, we review existing methods for fitting 3D

morphable models (3DMMs) to images, focusing on unsu-
pervised approaches that utilize rendering techniques. We
will also discuss the limitations of orthogonal projection in
these methods and introduce our proposed weak perspective
projection modification.

3.1. 3D Morphable Models

There are a variety of 3D morphable models (3DMMs).
Earlier approaches were based on linear combinations of 3D
scans. Effectively, these methods perform a principal com-
ponent analysis (PCA) on a set of 3D scans to create a sta-
tistical model that captures variations in shape and appear-
ance across the dataset, such as the Surry Face Model [14]
and the Basel Face Model [18]. Combining a multitude of
3D scans, these models allow for the representation of a
wide range of facial shapes and expressions using a rela-
tively small number of parameters.

There is a substantial amount of effort to improve
3DMM, such as using neural representations [4, 22] and
nerf-based solutions [12]. Although these methods are
promising, the simplicity and compatibility with existing
rendering engines of linear 3DMMs make them the de facto
standard for many tasks involving 3DMMs.

One of the most commonly used 3DMM FLAME [16],
from which we borrow the notation below, expresses the
morphable model T as follows:

TP (β, θ, ψ) = T̄ +BS(β⃗;S)+BP (θ⃗;P)+BE(ψ⃗; E) (1)

Where the final geometry TP is a function of the mean shape
T̄ , the shape basis BS , the pose basis BP , and the expres-

sion basis BE . The parameters β⃗, θ⃗, and ψ⃗ are the shape,
pose, and expression coefficients, respectively. With S and
E being the matrices of the basis of shape and expression,
and P being the skinning function for different head poses.
The shape basis captures the variations in the 3D shape of
the face, while the pose basis captures the variations in the
head’s pose, and the expression basis captures the variations
in facial expression.

As such, theoretically, any face can be roughly repre-
sented with three sets of parameters (β⃗, θ⃗, and ψ⃗), and meth-
ods to fit these parameters to facial portrait images or 3D
scans have been a major focus of research in the field of
computer vision and graphics.

3.2. Fitting 3D Morphable Models

Fitting 3D Morphable Models (3DMMs) to images in-
volves estimating the parameters of the model that best
match the observed data. This process traditionally requires
an optimization algorithm that minimizes the difference be-
tween the projected 3D model and the 2D image features.

Optimization-based methods often solve for the param-
eters of the 3DMM as well as camera parameters, such as
camera pose and focal length, by minimizing a loss function
that measures the discrepancy between the projected 3D
model and the observed image features [2, 3, 9, 10, 13, 21].

As more sophisticated image features and training meth-
ods have been developed, there has been a shift from
optimization-based fitting to regression-based approaches.
These methods leverage deep learning techniques to di-
rectly regress 3DMM parameters from image features [5,7,
8,11,26]. This process is often lightweight and enables pos-
sibilities such as end-to-end training, improved generaliza-
tion to unseen data, and new applications like video-based
fitting and real-time performance.

Unsupervised fitting methods such as DECA [7] and
EMOCA [5] have shown promising results by leveraging
rendering techniques to optimize the fitting process. These
methods typically use differentiable rendering to compute
gradients of the image features with respect to the 3DMM
parameters, allowing for efficient optimization without re-
quiring ground truth annotations.

SMIRK [19] uses a synthesis-based approach to create
more accurate facial expressions by synthesizing images us-
ing a generator to regress the appearance of a portrait under
different facial expressions. It has been shown that this ap-
proach can significantly improve the reconstruction quality
of extreme expressions.

One common aspect of many of these regression-based
methods is the use of orthogonal projection to map the 3D
model onto the 2D image plane. While this simplifies the
fitting process by ignoring perspective distortion, it also in-
troduces unintended artifacts in the final results. In this
work, we propose a backward-compatible modification to



the orthogonal projection that better captures the perspec-
tive distortion effect, leading to improved reconstruction
quality, especially for close-up images.

4. Methods
4.1. Projection Methods Used in 3D Morphable

Models

The fitting of 3DMMs to images typically involves pro-
jecting the 3D model onto a 2D image plane. The most
common projection methods used in 3DMM fitting are per-
spective projection and orthogonal projection.

Perspective projection is more commonly used in tradi-
tional optimization-based 3DMM fitting [11, 26], as it pro-
vides a more realistic representation of how 3D objects ap-
pear in 2D images. While more complex models exist, the
most widely adopted form of perspective projection is based
on the pinhole camera model, which simulates a camera
with a single point of view.

In this section, we largely follow the notation from Booth
et al. [3]. Given a point q in the canonical space of the
3DMM mesh, the point is first transformed by the camera
parameters, which include rotation and translation, and can
be expressed as:

[vx, vy, vz] = Rvq + [tx, ty, tz] (2)

Then the perspective projection onto a 2D image plane
can be expressed as:(

u
v

)
=

(
fx·vx
vz

+ cx
fy·vy

vz
+ cy

)
(3)

Where (u, v) are the pixel coordinates in the image,
(vx, vy, vz) are the 3D coordinates of the point, (fx, fy) are
the focal lengths in the x and y directions, and (cx, cy) are
the coordinates of the principal point. This is often simpli-
fied by setting fx = fy = f and cx = cy = 0, resulting in
the following simplified equation:(

u
v

)
=

(
f ·vx
vz

f ·vy
vz

)
(4)

Regressing the camera parameters requires estimating
the 3D rotation R, 3D translation t, and focal length f , re-
sulting in a total of seven parameters.

Nevertheless, regression-based methods often avoid us-
ing perspective projection. One of the earlier works that ex-
plored perspective projection [3] concluded that “it is ben-
eficial to keep the focal length constant in most cases, due
to its ambiguity with tz”. This is indeed true; a small face
in an image could result either from the face being far from
the camera or from the camera having a small focal length,
with almost no way to distinguish between the two—except

in one noticeable exception (Section 4.2). Training a net-
work to correctly predict both parameters is difficult, as the
network would have to learn to compensate tz with f (Sec-
tion 6.2).

Humans can often resolve this ambiguity using addi-
tional cues, such as the background in the image, but to
the best of our knowledge, no existing method attempts to
directly regress focal length from the image.

Instead, focal length is typically: 1. completely ignored,
as in the case of orthogonal projection [5,7,19,26], 2. fixed
to a constant value [6,23], or 3. estimated in post-processing
via optimization [10, 11, 25].

Orthogonal projection is often adopted to simplify the
fitting process by ignoring the effects of perspective distor-
tion. In practice, this is typically implemented as:(

u
v

)
=

(
Svx
Svy

)
(5)

Where S is a scaling factor, effectively ignoring the
depth information (tz , vz) of the 3D model. As a result,
the regression of the camera parameters is reduced to esti-
mating only the 3D rotation R, 2D translation components
tx and ty , and the scaling factor S, for a total of six param-
eters.

This eliminates the ambiguity between focal length and
tz , and has become the de facto standard in regression-based
3DMM fitting methods.

4.2. What Orthogonal Projection Misses

Our method is based on one key observation: existing
3DMM regression methods often fail to capture certain fa-
cial details accurately. One prominent cue we observed is,
quite literally, ‘on the nose’. When comparing the rendering
of regressed outputs to in-the-wild images, as well as ex-
treme close-up images filmed with a head-mounted camera
(HMC), we noticed that the noses often appear significantly
smaller than their actual size in the photo (Fig.3c, Fig.2).

Given that the nose is the most protruding part of the face
and often the closest to the camera in front-facing portraits
(corresponding to a smaller tz value), it should appear larger
under perspective projection than under orthogonal projec-
tion. Yet many existing methods reconstruct noses that are
noticeably smaller than their real-world size in the image.

A similar effect can be observed around the contour of
the face, where the upper ‘edge’ of the 3DMM mesh tends
to bend outward, effectively exaggerating the parietal region
of the head. We refer to this as the ‘expanding brain’ effect.
This distortion is visible across all images generated by the
baseline method in Figure 4.

Our method introduces a simple modification to the
orthogonal projection used in existing 3DMM regression
methods (Sec.4.3). This modification enables the net-
work to capture perspective distortion effects through fine-



Input Image = 0.0 = 1.0 = 2.0 = 3.0 = 4.0 = 5.0

Figure 2. Visualization of the newly introduced shrinkage parameter ρ. We estimate the 3DMM and camera parameters using SMIRK [19],
which employs orthogonal projection (ρ = 0). We vary ρ from 0.0 to 5.0 while holding all other parameters constant. Unlike perspective
projection, which relies on the combination of f and tz to control the shrinkage effect, ρ isolates this effect and can therefore be incorporated
into existing 3DMM regression methods via fine-tuning.

tuning, even when initially trained with orthogonal projec-
tion. We evaluated this approach by fine-tuning SMIRK
[19] (Sec.4.5). Additionally, we introduced several minor
components: a dataset of extreme close-up images captured
with head-mounted cameras (Sec.4.4), and a masking tech-
nique to address ambiguities around the nose and face con-
tour during fine-tuning (Sec. 4.5.3).

4.3. Pseudo Perspective Camera Model
Our proposed camera model is an extension of the or-

thogonal projection method by adding a new shrinkage pa-
rameter ρ that introduces the perspective effect.

[vx, vy, vz] = Rvq + [tx, ty, 0] (6)

(
u
v

)
=

(
S vx

1+ρvz

S
vy

1+ρvz

)
(7)

With ρ = 0, the projection is equivalent to orthogo-
nal projection, and as ρ increases, the projection becomes
more perspective-like (f ≈ S

ρ when ρvz ≫ 1), It con-
tains some very convenient properties. First, we can inter-
polate between orthogonal and perspective projection via a
smooth transition, which can be optimized via backpropa-
gation. This formulation also effectively isolates the shrink-
age effect of perspective projection into its own parameter
ρ, with minimal change in the overall projected size of the
object. As such, we train a network first with orthogonal
projection, and then gradually introduce the perspective dis-
tortion effect. We include a visualization of the effect of this
modification in Figure 2.

This new camera model can be related back to the per-
spective projection model by comparing the two projection
equations Eq.4 and Eq.7. The shrinkage parameter ρ can be
expressed in terms of focal length f , scale S, and the final
relative position of the object to the camera v:

f
vx,y
vz

= S
vx,y

1 + ρvz
(8)

ρ =
S

f
− 1

vz
(9)

In perspective project the object is unscale (S = 1), hence
the equation simplifies to ρ = 1

f − 1
vz

. An intuitive way to
think about this is that ρ represents the balance between the
focal length and the distance to the object, which determines
the strength of perspective distortion, while having minimal
effect on the overall size of the object projected. Longer fo-
cal length (higher f ) result in smaller perspective distortion
and a smaller ρ value; in contrast, object closer to the cam-
era (lower vz) experiences more perspective distortion and
a higher ρ value, ceteris paribus.

This modification can be incorporated into existing
3DMM regression methods that use orthogonal projection,
such as EMOCA [5], DECA [7], and SMIRK [19].

4.4. Head-Mounted Camera Dataset — HMC1M

The datasets used to train the regression methods
(EMOCA, DECA, and SMIRK) are a mix of studio-
captured and in-the-wild images. These images are typ-
ically captured from a distance greater than 50 cm from
the subject, so the perspective effect is not very pro-
nounced. We curated an internal dataset captured with a
head-mounted camera system similar to Faceware1. A few
sample images are shown throughout this paper in Fig.1 and
Fig.4. The dataset contains 1 million images, with the cam-
era typically ranging from 15 to 30 cm from approximately
200 professional actors. The focal length of the cameras is
adjusted prior to capture such that the entire face fits within
the frame with buffer at all sides, and varies slightly dur-
ing filming due to lens adjustment and zooming. The im-
ages were randomly sampled from in-house footage of act-
ing sequences. We fine-tune the models using HMC1M,
MEAD [24], FFHQ [15], and CelebA [17].

4.5. Finetuning Process

In this section, we describe how we fine-tune
SMIRK [19]. For completeness, we first briefly discuss
the training procedure of SMIRK, but we recommend the
reader refer to the original paper for more details.

1https://facewaretech.com/cameras



4.5.1 SMIRK formulation

SMIRK [19] is a 3DMM regression method that uses a neu-
ral renderer to synthesize facial expressions. It builds on
previous work such as EMOCA [5] and DECA [7], but
leverages a synthesized renderer to improve the reconstruc-
tion quality for extreme facial expression.

All these methods use encoders Eβ , Eϕ, and Eθ to
regress the camera pose β, 3DMM shape parameters ϕ,
and facial expression parameters θ, respectively. In addi-
tion to the encoders, SMIRK and EMOCA also use a neural
renderer R that learns to reconstruct the original input im-
age using the regressed info (β, ϕ, θ), and additional back-
ground information. This renderer enables the network to
form a feedback loop, allowing it to adjust the regressed
parameters to better match the input image.

4.5.2 Learning the Shrinkage Effect with Uncalibrated
Images

Most head-mounted camera footages are uncalibrated, as
the camera would often be adjusted to fit the actor’s face
within the frame as much as possible (changing focal
length), and the distance between the camera and the ac-
tor’s face would also vary due to head shape and movement
(changing vz). As such, it would be crucial to learn the
shrinkage parameter ρ in an unsupervised manner.

We add a single linear layer followed by a sigmoid acti-
vation to Eβ , with a scaling hyperparameter ρmax to limit
the maximum value of the ρ parameter. We initialize the
linear layer with small weights and bias (both set to 0.01)
to ensure that the initial projection is compatible with the
pretrained network.

We learn to regress the new shrinkage parameter ρ using
a loosely set prior ρprior. We randomly sample five im-
ages from HMC1M and generate the 3DMM and camera
parameters using the pretrained network. We then manu-
ally adjust ρ for each image such that the rendering result
best matches the image visually. Based on this, we empir-
ically set ρprior = 4.0 for HMC1M and ρprior = 0.0 for
all other datasets. The objective is to minimize the devia-
tion of the predicted ρ from the prior value using an L2 loss
term Lρ = λp||ρ− ρprior||22, where λp = 0.1, and this loss
function is added to the original training loss.
ρprior can also be determined analytically if f and vz are

known, using Eq 9. For HMC1M, vz approximates 15 to 30
cm, and the sensor size is typically around 1/2.3 ” (width
≈ 0.455cm). Lenses are adjusted such that the face (width
≈ 15cm) occupies approximately half of the image width.
The effective f and ρ can be calculated as follows:

f =
sensor width · vz

face width · 2 ≈ 0.227–0.455 (10)

ρ =
1

f
− 1

vz
≈ 2.16-4.34 (11)

4.5.3 Masking the Ambigious

As discussed in Sec.4.2, the nose and the face contour often
appear to be the most mismatched regions. To address this,
we modified the masking technique used in SMIRK [19]
to specifically handle the ambiguity of the nose and face
contour. During training, we follow SMIRK by masking
out all pixels of the entire face, then add back one percent
of the pixels as guidance for the renderer R. We then erode
the mask so that pixels around the contour are not added
back. Additionally, we apply a separate mask at the center
of the face to remove pixels around the nose.

5. Evaluation
5.1. Evaluation Settings

We fine-tune the model starting from DECA, following
mostly the same procedures as SMIRK. We train our model
using all the datasets employed in SMIRK, as well as our
own dataset discussed in Section 4.4, which we refer to as
‘Ours’. For a fair comparison, we also retrain SMIRK on
the same datasets and refer to this version as smirkr. Addi-
tionally, we evaluate the pretrained official SMIRK model,
referred to as smirkp. Where applicable, we also evaluate
our method on MICA [26].

5.2. Quantitative Evaluation

We quantitatively evaluate the reconstruction quality of
our method using two criteria: 1. whether it can correctly
produce a mesh that, when projected, matches the image,
and 2. whether it better recovers the underlying facial ge-
ometry.

5.2.1 2D Landmark Reconstruction

To address the first question, we evaluate the sparse
landmark reconstruction loss on the test sets of in-the-
wild datasets, including MEAD [24], CelebA [17], and
FFHQ [15]. Additionally, we assess reconstruction quality
on the HMC1M dataset. In Table 1, we report the recon-
struction loss separately for the jawline and the rest of the
facial landmarks to provide a clearer picture.

We observe that our method achieves the best reconstruc-
tion quality across different landmark regions on HMC1M,
while smirkr (SMIRK [19] fine-tuned with HMC1M) pro-
duces the best result on the jawline for the MEAD dataset.
Although this observation alone is not conclusive, we hy-
pothesize that it is because the MEAD dataset exhibits sub-
tle uncorrected perspective distortion, and training with the
heavily distorted HMC1M dataset allows partial correction
of this effect.

However, this comparison remains inconclusive - not
only because the reported loss has been shown to corre-
late poorly with human perception of reconstruction qual-



Landmark
Region Method MEAD HMC1M

smirkp 7.941 5.861
Jaw line smirkr 7.004 5.065

Ours 10.16 4.646
smirkp 2.763 3.236

Facial smirkr 2.058 1.737
Ours 1.565 1.655

Table 1. Landmark reconstruction loss on the MEAD and
HMC1M datasets. We report the reconstruction loss for the jaw
line and the rest of the facial landmarks separately. All numbers
are multiplied by 104 for readability.

ity [1, 5, 8], but also because the landmark detector used
to compute the reconstruction loss is often inaccurate for
close-up images. We did not evaluate the methods on
CelebA and FFHQ because all images from these datasets
were used to train the original SMIRK model.
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Figure 3. We compare our method with the pretrained SMIRK
model, on the images used in the SMIRK paper. They provide
similar reconstruction quality visibly.

5.2.2 3D-based Mesh Reconstruction

As for the second question, we evaluate our method using
the NoW dataset [20]. The NoW dataset is a large-scale
collection of 3D scans of human faces in a neutral expres-
sion, accompanied by in-the-wild images. In particular, we
evaluated our method on the NoW neutral and selfie sub-
sets. Since the NoW dataset does not provide ground-truth
meshes for the selfie subset, we compare reconstruction
quality by generating the neutral facial geometry using our
method and smirkp. We first regress the full 3DMM and
camera parameters using each method, then compute the

Reconstruction Loss NoW Neutral NoW Selfie
smirkp 1.2563 1.2718

Ours 1.2320 1.2143
MICA [26] 1.1162 1.1238

Table 2. Reconstruction loss on the NoW dataset. We report the
reconstruction loss for the NoW neutral and selfie subset.

neutral facial geometry by setting the expression and pose
coefficients to zero. These final meshes are then compared
with the 3D neutral face scans to calculate the reconstruc-
tion loss. Table 2 reports the reconstruction loss for both the
NoW neutral and selfie subsets.

While our method generally achieves better reconstruc-
tion quality than smirkp, the difference is particularly sig-
nificant on the NoW selfie subset. We attribute this to the
fact that selfie images tend to exhibit stronger perspective
distortion. Notably, our method performs better on the selfie
subset than on the neutral subset, whereas smirkp shows
the opposite trend. This aligns with our motivation: intro-
ducing perspective distortion should help with close-up im-
ages, such as selfies, where this effect is more pronounced.

That said, both smirkp and our method underperform
compared to MICA [26]. We attribute this to the fact that
MICA is trained on a larger dataset of 3D scans specifically
for the task of reconstructing neutral facial geometry from
arbitrary expressions and viewing angles. In contrast, our
method is optimized to produce a mesh that matches the
input image, rather than the underlying neutral geometry.

5.3. Qualitative Evaluation

5.3.1 Perception Study

We randomly selected 100 images from each of the test
sets of MEAD and HMC1M. For each image, we generated
mesh renderings using our method, smirkp, and smirkr.
We then crowd-sourced responses via Amazon Mechanical
Turk to evaluate which of the three reconstruction methods
produced geometry that best matched the image. The dis-
play order of the renderings was randomized, and respon-
dents were asked to select the rendering that best repre-
sented the image. Out of the 619 responses collected, 44.4%
(275) favored our method, 23.4% (145) favored smirkp,
and 32.1% (199) favored smirkr.

5.3.2 Visual Comparison

We also provide visualizations comparing our method with
smirkp. In Figure 3, we compare our method with smirkp
using in-the-wild style teaser images from the SMIRK pa-
per. While we observe minor improvements in specific re-
gions—such as the nose in Fig. 3c—we do not find any sig-
nificant difference in overall reconstruction quality. This is
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Figure 4. We compare our method with the pretrained and retrained versions of the SMIRK model, on the images from the HMC1M
dataset.



HMC1M MEAD CelebA FFHQ
ρ 2.95± 0.96 1.35± 0.42 0.69± 0.31 0.68± 0.29

Table 3. Estimated ρ values for all datasets used. We sampled
and computed the average ρ from 10k images from each of the
datasets, under our camera model. HMC1M experiencing the
highest distortion, and CelebA and FFHQ exhibiting minimal dis-
tortion.

expected, as our method shares a largely identical network
architecture and training protocol with SMIRK.

Additionally, we include more visual comparisons us-
ing images from the HMC1M dataset (Fig.4). In general,
our method is more capable of reconstructing the geometry
of close-up images. In the jaw region, it is clearly visible
that smirkp produces unrealistic facial expressions—such
as hollow cheeks—to compensate for perspective distortion
(see Fig.4c, d). Our method also avoids the ‘expanding
brain’ issue seen in baseline outputs.

6. Discussion

6.1. Limitations

Our motivation behind this work is to improve the recon-
struction quality of monocular 3DMM regression methods
for close-up images. Theoretically, our method can produce
more accurate 3D reconstructions even for in-the-wild im-
ages. However, we did not observe a significant improve-
ment in those cases. We suspect this is because most in-
the-wild images are mostly orthogonal to begin with. We
measured and reported the average value of estimated ρ
from different datasets in Table 3. HCM1M experiences
the highest estimated ρ value. This validates the need for
a specialized camera model for handling extreme close-
up images. CelebA and FFHQ both have very low ρ val-
ues (little perspective distortion). This aligns with the fact
that these datasets mostly consist of professionally taken
images, which typically avoid extreme close-ups and are
taken afar. MEAD has a moderate ρ value, showing that
it contains moderate perspective distortion. While we can-
not find the documentation regarding the exact capturing
setup (camera position, focal length), the capturing studio
appears relatively small, and it would be reasonable to as-
sume that the subjects are fairly close to the camera, which
would explain the moderate ρ value. This is also likely the
reason why our method achieves slightly better results on
the MEAD dataset, as the baseline model trained with or-
thogonal projection would not be able to fully correct the
distortion, and this highlights the importance of compensat-
ing for perspective distortion even for in-the-wild images.

Input Perspective Ours

Figure 5. We finetuned the baseline SMIRK model with full per-
spective projection. The network would fail to properly capture the
perspective distortion effect, and the results remain mostly orthog-
onal (large f value). For comparsion, this converts to ρ ≈ 0.78
in our camera model, while our method predicts a more visually
similar result with ρ = 1.94.

6.2. Training with full perspective model

While early work such as Booth et.al. [3] concluded that
learning to regress the focal length f and distance to the ob-
ject tz directly is difficult. As the reconstruction capability
of neural networks improves, it is worth revisiting this ques-
tion. As an alternative strategy, we also attempted to learn
to regress f and tz directly. First, we modified the projec-
tion method of SMIRK to predict f and tz directly instead
of S. This is, however, not successful, and the network loss
would not stabilize as with orthogonal projection. We sus-
pect it is due to the fact that the network would not be able
to receive a stable enough gradient signal to adjust both f
and tz in opposite directions early in the training. We also
attempt to convert the pretrained SMIRK model to predict
f and tz via finetuning. We approximate the focal length
with f = S−1 and set up a reasonable tz value based on
the training dataset. While this network is able to produce
stable results, it failed to capture the perspective distortion
effect, and the results remain mostly orthogonal (Fig 5).

7. Conclusion

In this work, we present a novel camera model by
extending orthogonal projection method used in existing
3DMM regression approaches, and finetuning method for
converting models trained with orthogonal projection to
the new camera model. We show that our method effec-
tively captures the shrinkage effect of perspective projec-
tion, which is crucial for accurately reconstructing facial
geometry in close-up scenarios such as those captured by
head-mounted cameras and selfies.

Through extensive experiments, we demonstrate that our
method outperforms existing approaches on the HMC1M
dataset, which contains close-up facial images captured us-
ing head-mounted cameras. We also observe no significant
performance degradation on more in-the-wild datasets, such
as CelebA and FFHQ.



References
[1] Zakaria Aldeneh, Masha Fedzechkina, Skyler Seto, Kather-

ine Metcalf, Miguel Sarabia, Nicholas Apostoloff, and
Barry-John Theobald. Towards a perceptual model for
estimating the quality of visual speech. arXiv preprint
arXiv:2203.10117, 2022. 6

[2] Volker Blanz and Thomas Vetter. Face recognition based on
fitting a 3d morphable model. IEEE Transactions on pattern
analysis and machine intelligence, 25(9):1063–1074, 2003.
2

[3] James Booth, Epameinondas Antonakos, Stylianos
Ploumpis, George Trigeorgis, Yannis Panagakis, and
Stefanos Zafeiriou. 3d face morphable models ”in-the-
wild”. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017. 2, 3, 8

[4] Giorgos Bouritsas, Sergiy Bokhnyak, Stylianos Ploumpis,
Michael Bronstein, and Stefanos Zafeiriou. Neural 3d mor-
phable models: Spiral convolutional networks for 3d shape
representation learning and generation. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 7213–7222, 2019. 2

[5] Radek Danecek, Michael J. Black, and Timo Bolkart.
EMOCA: Emotion driven monocular face capture and an-
imation. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 20311–20322, 2022. 2, 3, 4, 5,
6

[6] Yu Deng, Jiaolong Yang, Sicheng Xu, Dong Chen, Yunde
Jia, and Xin Tong. Accurate 3d face reconstruction with
weakly-supervised learning: From single image to image
set. In IEEE Computer Vision and Pattern Recognition Work-
shops, 2019. 3

[7] Yao Feng, Haiwen Feng, Michael J. Black, and Timo
Bolkart. Learning an animatable detailed 3D face model
from in-the-wild images. volume 40, 2021. 2, 3, 4, 5

[8] Panagiotis P. Filntisis, George Retsinas, Foivos Paraperas-
Papantoniou, Athanasios Katsamanis, Anastasios Roussos,
and Petros Maragos. Visual speech-aware perceptual 3d fa-
cial expression reconstruction from videos. arXiv preprint
arXiv:2207.11094, 2022. 2, 6

[9] Baris Gecer, Stylianos Ploumpis, Irene Kotsia, and Ste-
fanos P Zafeiriou. Fast-ganfit: Generative adversarial net-
work for high fidelity 3d face reconstruction. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2021.
2

[10] Simon Giebenhain, Tobias Kirschstein, Martin Rünz, Lour-
des Agapito, and Matthias Nießner. Pixel3dmm: Versatile
screen-space priors for single-image 3d face reconstruction,
2025. 2, 3

[11] Charlie Hewitt, Fatemeh Saleh, Sadegh Aliakbarian, Lohit
Petikam, Shideh Rezaeifar, Louis Florentin, Zafiirah Hose-
nie, Thomas J Cashman, Julien Valentin, Darren Cosker, and
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